The Malthusian Hypothesis

Oded Galor

October 26, 2019

• The Mystery of Growth:

- The Mystery of Growth:
 - Why economic growth emerged only in the past two centuries, after hundreds of thousands of years of stagnation?

- The Mystery of Growth:
 - Why economic growth emerged only in the past two centuries, after hundreds of thousands of years of stagnation?
- The Mystery of the Gaps

- The Mystery of Growth:
 - Why economic growth emerged only in the past two centuries, after hundreds of thousands of years of stagnation?
- The Mystery of the Gaps
 - What is the origin of the vast inequality in income per capita across countries and regions?

• Requires the identification of the Malthusian forces:

- Requires the identification of the Malthusian forces:
 - Triggered the transition from stagnation to growth

- Requires the identification of the Malthusian forces:
 - Triggered the transition from stagnation to growth
 - The differential timing of the transition across the globe

- Requires the identification of the Malthusian forces:
 - Triggered the transition from stagnation to growth
 - The differential timing of the transition across the globe
 - The role of historical pre-historical factors in this process

- Requires the identification of the Malthusian forces:
 - Triggered the transition from stagnation to growth
 - The differential timing of the transition across the globe
 - The role of historical pre-historical factors in this process
 - The contribution of evolutionary forces in this process

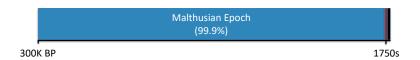
• Forces that operated in the distant past contributed to:

- Forces that operated in the distant past contributed to:
 - \bullet The timing of the transition from stagnation to growth

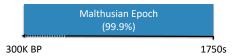
- Forces that operated in the distant past contributed to:
 - The timing of the transition from stagnation to growth
 - The vast inequality across countries and regions

- Forces that operated in the distant past contributed to:
 - The timing of the transition from stagnation to growth
 - The vast inequality across countries and regions
- The Malthusian epoch is key to the resolution of the two mysteries

Phases of Development

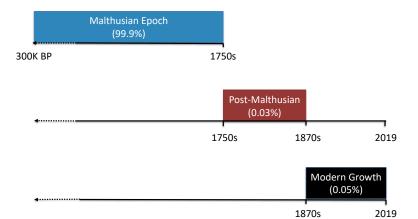

Phases of Development

- The Malthusian Epoch
- The Post-Malthusian Regime


Phases of Development

- The Malthusian Epoch
- The Post-Malthusian Regime
- The Modern Growth Regime

Phases of Development: Timeline of the Most Developed Economies



Phases of Development: Timeline of the Most Developed Economies

Phases of Development: Timeline of the Most Developed Economies

• Dualism: Stagnation & Dynamism:

- Dualism: Stagnation & Dynamism:
 - Stagnation in living standards:

- Dualism: Stagnation & Dynamism:
 - Stagnation in living standards:
 - Income per capita: trendless fluctuation in a narrow range

- Dualism: Stagnation & Dynamism:
 - Stagnation in living standards:
 - Income per capita: trendless fluctuation in a narrow range
 - Life expectancy: trendless fluctuation in the range of 25-40 years

- Dualism: Stagnation & Dynamism:
 - Stagnation in living standards:
 - Income per capita: trendless fluctuation in a narrow range
 - Life expectancy: trendless fluctuation in the range of 25-40 years
 - Dynamism:

- Dualism: Stagnation & Dynamism:
 - Stagnation in living standards:
 - Income per capita: trendless fluctuation in a narrow range
 - Life expectancy: trendless fluctuation in the range of 25-40 years
 - Dynamism:
 - Technological progress

- Dualism: Stagnation & Dynamism:
 - Stagnation in living standards:
 - Income per capita: trendless fluctuation in a narrow range
 - Life expectancy: trendless fluctuation in the range of 25-40 years
 - Dynamism:
 - Technological progress
 - Population growth

- Dualism: Stagnation & Dynamism:
 - Stagnation in living standards:
 - Income per capita: trendless fluctuation in a narrow range
 - Life expectancy: trendless fluctuation in the range of 25-40 years
 - Dynamism:
 - Technological progress
 - Population growth
 - Evolution: (biological or cultural) adaptation of human traits

- Dualism: Stagnation & Dynamism:
 - Stagnation in living standards:
 - Income per capita: trendless fluctuation in a narrow range
 - Life expectancy: trendless fluctuation in the range of 25-40 years
 - Dynamism:
 - Technological progress
 - Population growth
 - Evolution: (biological or cultural) adaptation of human traits
 - Malthusian dynamism

- Dualism: Stagnation & Dynamism:
 - Stagnation in living standards:
 - Income per capita: trendless fluctuation in a narrow range
 - Life expectancy: trendless fluctuation in the range of 25-40 years
 - Dynamism:
 - Technological progress
 - Population growth
 - Evolution: (biological or cultural) adaptation of human traits
 - Malthusian dynamism
 - Ultimately triggered the transition from stagnation to growth

• Central characteristics of the period:

- Central characteristics of the period:
 - Positive effect of income on population growth (via reduction in child mortality, increase in fertility & life expectancy)

- Central characteristics of the period:
 - Positive effect of income on population growth (via reduction in child mortality, increase in fertility & life expectancy)
 - $y \uparrow \Longrightarrow L \uparrow$

- Central characteristics of the period:
 - Positive effect of income on population growth (via reduction in child mortality, increase in fertility & life expectancy)

•
$$y \uparrow \Longrightarrow L \uparrow$$

• Diminishing returns to labor: (due to land constraint)

- Central characteristics of the period:
 - Positive effect of income on population growth (via reduction in child mortality, increase in fertility & life expectancy)

•
$$y \uparrow \Longrightarrow L \uparrow$$

- Diminishing returns to labor: (due to land constraint)
 - $L \uparrow \Longrightarrow AP_L \downarrow$

Malthusian Dynamics

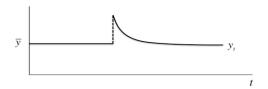
• Technological progress during the Malthusian epoch

- Technological progress during the Malthusian epoch
 - Increases income per capita in the very short-run

- Technological progress during the Malthusian epoch
 - Increases income per capita in the very short-run
 - $A \uparrow \implies y \uparrow$ (above subsistence)

- Technological progress during the Malthusian epoch
 - Increases income per capita in the very short-run
 - $A \uparrow \implies y \uparrow$ (above subsistence)
 - Population adjust, as long as income remains above subsistence

- Technological progress during the Malthusian epoch
 - Increases income per capita in the very short-run
 - $A \uparrow \implies y \uparrow$ (above subsistence)
 - Population adjust, as long as income remains above subsistence
 - $y \uparrow \Longrightarrow L \uparrow$


- Technological progress during the Malthusian epoch
 - Increases income per capita in the very short-run
 - $A \uparrow \implies y \uparrow$ (above subsistence)
 - Population adjust, as long as income remains above subsistence
 - $y \uparrow \Longrightarrow L \uparrow$
 - Income per capita ultimately returns to its long-run level

- Technological progress during the Malthusian epoch
 - Increases income per capita in the very short-run
 - $A \uparrow \implies y \uparrow$ (above subsistence)
 - Population adjust, as long as income remains above subsistence
 - $y \uparrow \Longrightarrow L \uparrow$
 - Income per capita ultimately returns to its long-run level
 - $L \uparrow \Longrightarrow AP_L \downarrow \Longrightarrow y \downarrow$

- Technological progress during the Malthusian epoch
 - Increases income per capita in the very short-run
 - $A \uparrow \implies y \uparrow$ (above subsistence)
 - Population adjust, as long as income remains above subsistence
 - $y \uparrow \Longrightarrow L \uparrow$
 - Income per capita ultimately returns to its long-run level
 - $L \uparrow \Longrightarrow AP_L \downarrow \Longrightarrow y \downarrow$
- Technologically advanced & land-rich economies:

- Technological progress during the Malthusian epoch
 - Increases income per capita in the very short-run
 - $A \uparrow \implies y \uparrow$ (above subsistence)
 - Population adjust, as long as income remains above subsistence
 - $y \uparrow \Longrightarrow L \uparrow$
 - Income per capita ultimately returns to its long-run level
 - $L \uparrow \Longrightarrow AP_I \downarrow \Longrightarrow y \downarrow$
- Technologically advanced & land-rich economies:
 - Higher population density

- Technological progress during the Malthusian epoch
 - Increases income per capita in the very short-run
 - $A \uparrow \implies y \uparrow$ (above subsistence)
 - Population adjust, as long as income remains above subsistence
 - $y \uparrow \Longrightarrow L \uparrow$
 - Income per capita ultimately returns to its long-run level
 - $L \uparrow \Longrightarrow AP_L \downarrow \Longrightarrow y \downarrow$
- Technologically advanced & land-rich economies:
 - Higher population density
 - Similar levels of income per-capita in the long-run

• The dynamics of Irish economy (1650 - 1850)

- The dynamics of Irish economy (1650 1850)
 - Triggered by the adoption of a new world crop potato

- The dynamics of Irish economy (1650 1850)
 - Triggered by the adoption of a new world crop potato
- The dynamics of the Chinese Economy (1500 1910)

- The dynamics of Irish economy (1650 1850)
 - Triggered by the adoption of a new world crop potato
- The dynamics of the Chinese Economy (1500 1910)
 - Triggered by superior agricultural technology & adoption of Maize

- The dynamics of Irish economy (1650 1850)
 - Triggered by the adoption of a new world crop potato
- The dynamics of the Chinese Economy (1500 1910)
 - Triggered by superior agricultural technology & adoption of Maize
- The dynamics of the English economy (1348 1700)

- The dynamics of Irish economy (1650 1850)
 - Triggered by the adoption of a new world crop potato
- The dynamics of the Chinese Economy (1500 1910)
 - Triggered by superior agricultural technology & adoption of Maize
- The dynamics of the English economy (1348 1700)
 - Triggered by the Black Death

ullet The Colombian Exchange \Longrightarrow massive cultivation of potato post-1650

- ullet The Colombian Exchange \Longrightarrow massive cultivation of potato post-1650
 - 1650-1840s

- ullet The Colombian Exchange \Longrightarrow massive cultivation of potato post-1650
 - 1650-1840s
 - Population grew from 2 to 6 million

- ullet The Colombian Exchange \Longrightarrow massive cultivation of potato post-1650
 - 1650-1840s
 - Population grew from 2 to 6 million
 - Income per capita increased only very modestly

Ireland

- ullet The Colombian Exchange \Longrightarrow massive cultivation of potato post-1650
 - 1650-1840s
 - Population grew from 2 to 6 million
 - Income per capita increased only very modestly
 - 1845-1852 Potato blight destroys crops ⇒ Great Famine

Ireland

- ullet The Colombian Exchange \Longrightarrow massive cultivation of potato post-1650
 - 1650-1840s
 - Population grew from 2 to 6 million
 - Income per capita increased only very modestly
 - 1845-1852 Potato blight destroys crops \Longrightarrow Great Famine
 - Population declined by about 2 million (Death & Emigration)

Ireland

- ullet The Colombian Exchange \Longrightarrow massive cultivation of potato post-1650
 - 1650-1840s
 - Population grew from 2 to 6 million
 - Income per capita increased only very modestly
 - 1845-1852 Potato blight destroys crops ⇒ Great Famine
 - Population declined by about 2 million (Death & Emigration)
 - Income per capita remained nearly unchanged

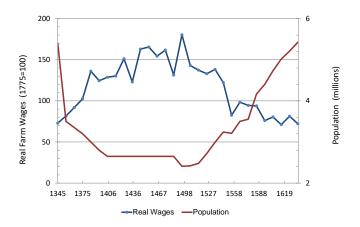
Superior agricultural technology

- Superior agricultural technology
 - 1500-1820

- Superior agricultural technology
 - 1500-1820
 - Population increased from 103 to 381 million

- Superior agricultural technology
 - 1500-1820
 - Population increased from 103 to 381 million
 - Share of China in world population increased from 23% to 37%

- Superior agricultural technology
 - 1500-1820
 - Population increased from 103 to 381 million
 - Share of China in world population increased from 23% to 37%
 - Income per capita was steady at \$600


- Superior agricultural technology
 - 1500-1820
 - Population increased from 103 to 381 million
 - Share of China in world population increased from 23% to 37%
 - Income per capita was steady at \$600
- Adoption of Maize (Chen and Kung, JOEG 2016)

- Superior agricultural technology
 - 1500-1820
 - Population increased from 103 to 381 million
 - Share of China in world population increased from 23% to 37%
 - Income per capita was steady at \$600
- Adoption of Maize (Chen and Kung, JOEG 2016)
 - 1776-1910

- Superior agricultural technology
 - 1500-1820
 - Population increased from 103 to 381 million
 - Share of China in world population increased from 23% to 37%
 - Income per capita was steady at \$600
- Adoption of Maize (Chen and Kung, JOEG 2016)
 - 1776-1910
 - ullet Contributed to 1/5 of China's population growth over the period

- Superior agricultural technology
 - 1500-1820
 - Population increased from 103 to 381 million
 - Share of China in world population increased from 23% to 37%
 - Income per capita was steady at \$600
- Adoption of Maize (Chen and Kung, JOEG 2016)
 - 1776-1910
 - ullet Contributed to 1/5 of China's population growth over the period
 - No impact on income per capita (real wages)

Malthusian Adjustments to the Black Death: England, 1348–1635

Length of the Malthusian Adjustment Period

Black Death:

Length of the Malthusian Adjustment Period

- Black Death:
 - 300 years

Length of the Malthusian Adjustment Period

- Black Death:
 - 300 years
- 1609 Spanish expulsion of 300K converted Muslims (Moriscos):

Length of the Malthusian Adjustment Period

- Black Death:
 - 300 years
- 1609 Spanish expulsion of 300K converted Muslims (Moriscos):
 - 180 years (Chaney and Hornbeck, EJ 2016)

• Overlapping-generations economy

- Overlapping-generations economy
- t = 0, 1, 2, 3...

- Overlapping-generations economy
- t = 0, 1, 2, 3...
- One homogeneous good

- Overlapping-generations economy
- t = 0, 1, 2, 3...
- One homogeneous good
- 2 factors of production:

- Overlapping-generations economy
- t = 0, 1, 2, 3...
- One homogeneous good
- 2 factors of production:
 - Labor

- Overlapping-generations economy
- t = 0, 1, 2, 3...
- One homogeneous good
- 2 factors of production:
 - Labor
 - Land

$$Y_t =$$

$$Y_t =$$

$$Y_t = (AX)^{\alpha} L_t^{1-\alpha} \qquad 0 < \alpha < 1$$

 \bullet The output produced in period t

$$Y_t = (AX)^{\alpha} L_t^{1-\alpha} \qquad 0 < \alpha < 1$$

• $L_t \equiv$ working population (labor) in period t

$$Y_t = (AX)^{\alpha} L_t^{1-\alpha} \qquad 0 < \alpha < 1$$

- $L_t \equiv$ working population (labor) in period t
- $X \equiv land$

$$Y_t = (AX)^{\alpha} L_t^{1-\alpha} \qquad 0 < \alpha < 1$$

- $L_t \equiv$ working population (labor) in period t
- $X \equiv land$
- $A \equiv$ technological level

$$Y_t = (AX)^{\alpha} L_t^{1-\alpha} \qquad 0 < \alpha < 1$$

- $L_t \equiv$ working population (labor) in period t
- $X \equiv land$
- $A \equiv$ technological level
- $AX \equiv$ effective resources

$$Y_t = (AX)^{\alpha} L_t^{1-\alpha} \qquad 0 < \alpha < 1$$

- $L_t \equiv$ working population (labor) in period t
- $X \equiv land$
- $A \equiv$ technological level
- $AX \equiv$ effective resources
- Output per worker produced at time t

$$y_t =$$

$$Y_t = (AX)^{\alpha} L_t^{1-\alpha} \qquad 0 < \alpha < 1$$

- $L_t \equiv$ working population (labor) in period t
- $X \equiv land$
- $A \equiv$ technological level
- $AX \equiv$ effective resources
- Output per worker produced at time t

$$y_t =$$

 \bullet The output produced in period t

$$Y_t = (AX)^{\alpha} L_t^{1-\alpha} \qquad 0 < \alpha < 1$$

- $L_t \equiv$ working population (labor) in period t
- $X \equiv land$
- $A \equiv$ technological level
- $AX \equiv$ effective resources
- Output per worker produced at time t

$$y_t = \frac{Y_t}{L_t} =$$

$$Y_t = (AX)^{\alpha} L_t^{1-\alpha} \qquad 0 < \alpha < 1$$

- $L_t \equiv$ working population (labor) in period t
- $X \equiv land$
- $A \equiv$ technological level
- $AX \equiv$ effective resources
- Output per worker produced at time t

$$y_t = \frac{Y_t}{L_t} = \left[\frac{AX}{L_t}\right]^{\alpha}$$

• Land is fixed over time

- Land is fixed over time
 - Surface of planet earth

- Land is fixed over time
 - Surface of planet earth
- Labor evolves endogenously

- Land is fixed over time
 - Surface of planet earth
- Labor evolves endogenously
 - Determined by households' fertility rate

• Live for 2 period

- Live for 2 period
 - Childhood: (1st Period):

- Live for 2 period
 - Childhood: (1st Period):
 - Passive economic agents

- Live for 2 period
 - Childhood: (1st Period):
 - Passive economic agents
 - Consume fixed amount of their parental resources

- Live for 2 period
 - Childhood: (1st Period):
 - Passive economic agents
 - Consume fixed amount of their parental resources
 - Adulthood (2nd Period):

- Live for 2 period
 - Childhood: (1st Period):
 - Passive economic agents
 - Consume fixed amount of their parental resources
 - Adulthood (2nd Period):
 - Work

- Live for 2 period
 - Childhood: (1st Period):
 - Passive economic agents
 - Consume fixed amount of their parental resources
 - Adulthood (2nd Period):
 - Work
 - Allocate income between consumption and children

• Preferences of an adult at time t

$$U_t =$$

• Preferences of an adult at time t

$$U_t =$$

• Preferences of an adult at time t

$$U_t = (n_t)^{\gamma} (c_t)^{1-\gamma}$$

• Preferences of an adult at time t

$$U_t = (n_t)^{\gamma} (c_t)^{1-\gamma} \qquad \qquad 0 < \gamma < 1$$

• $n_t \equiv$ number of children of individual t

Preferences of an adult at time t

$$U_t = (n_t)^{\gamma} (c_t)^{1-\gamma} \qquad \qquad 0 < \gamma < 1$$

- $n_t \equiv$ number of children of individual t
- $c_t \equiv$ consumption of individual t

Preferences of an adult at time t

$$U_t = (n_t)^{\gamma} (c_t)^{1-\gamma} \qquad \qquad 0 < \gamma < 1$$

- $n_t \equiv$ number of children of individual t
- $c_t \equiv$ consumption of individual t
- Budget constraint:

Preferences of an adult at time t

$$U_t = (n_t)^{\gamma} (c_t)^{1-\gamma} \qquad \qquad 0 < \gamma < 1$$

- $n_t \equiv$ number of children of individual t
- $c_t \equiv$ consumption of individual t
- Budget constraint:

Preferences and Budget Constraint

Preferences of an adult at time t

$$U_t = (n_t)^{\gamma} (c_t)^{1-\gamma} \qquad \qquad 0 < \gamma < 1$$

- $n_t \equiv$ number of children of individual t
- $c_t \equiv$ consumption of individual t
- Budget constraint:

$$\rho n_t + c_t \leq y_t$$

Preferences and Budget Constraint

Preferences of an adult at time t

$$U_t = (n_t)^{\gamma} (c_t)^{1-\gamma} \qquad \qquad 0 < \gamma < 1$$

- $n_t \equiv$ number of children of individual t
- $c_t \equiv$ consumption of individual t
- Budget constraint:

$$\rho n_t + c_t \leq y_t$$

• $\rho \equiv \cos t$ of raising a child

$$c_t =$$

$$c_t = (1-\gamma)$$

$$c_t = (1 - \gamma)y_t$$

$$c_t = (1 - \gamma)y_t$$
 $ho n_t =$

$$c_t = (1 - \gamma) y_t$$
 $ho n_t = \gamma$

$$c_t = (1 - \gamma)y_t$$
 $ho n_t = \gamma y_t$

• Optimal expenditure on consumption and children

$$c_t = (1 - \gamma)y_t$$
 $ho n_t = \gamma y_t$

Desirable number of children

• Optimal expenditure on consumption and children

$$c_t = (1 - \gamma)y_t$$
 $ho n_t = \gamma y_t$

Desirable number of children

• Optimal expenditure on consumption and children

$$c_t = (1 - \gamma)y_t$$
 $ho n_t = \gamma y_t$

Desirable number of children

 n_t

• Optimal expenditure on consumption and children

$$c_t = (1 - \gamma)y_t$$
 $ho n_t = \gamma y_t$

Desirable number of children

$$n_t = rac{\gamma}{
ho}$$

• Optimal expenditure on consumption and children

$$c_t = (1 - \gamma)y_t$$
 $ho n_t = \gamma y_t$

Desirable number of children

$$n_t = \frac{\gamma}{\rho} y_t$$

$$L_{t+1} =$$

$$L_{t+1}=n_t$$

$$L_{t+1} = n_t L_t$$

• The evolution of the size of the working population

$$L_{t+1} = n_t L_t$$

where

$$n_t = \frac{\gamma}{\rho} y_t$$

• The evolution of the size of the working population

$$L_{t+1} = n_t L_t$$

where

$$n_t = \frac{\gamma}{\rho} y_t$$

$$L_{t+1} =$$

• The evolution of the size of the working population

$$L_{t+1} = n_t L_t$$

where

$$n_t = \frac{\gamma}{\rho} y_t$$

$$L_{t+1} = \frac{\gamma}{\rho} y_t$$

• The evolution of the size of the working population

$$L_{t+1}=n_tL_t$$

where

$$n_t = \frac{\gamma}{\rho} y_t$$

$$L_{t+1} = \frac{\gamma}{\rho} y_t L_t$$

• The evolution of the size of the working population

$$L_{t+1}=n_tL_t$$

where

$$n_t = \frac{\gamma}{\rho} y_t$$

$$L_{t+1} = \frac{\gamma}{\rho} y_t L_t = \frac{\gamma}{\rho} Y_t$$

• The evolution of the size of the working population

$$L_{t+1}=n_tL_t$$

where

$$n_t = \frac{\gamma}{\rho} y_t$$

$$L_{t+1} = \frac{\gamma}{\rho} y_t L_t = \frac{\gamma}{\rho} Y_t = \frac{\gamma}{\rho}$$

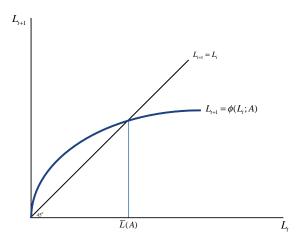
• The evolution of the size of the working population

$$L_{t+1}=n_tL_t$$

where

$$n_t = \frac{\gamma}{\rho} y_t$$

$$L_{t+1} = \frac{\gamma}{\rho} y_t L_t = \frac{\gamma}{\rho} Y_t = \frac{\gamma}{\rho} (AX)^{\alpha} L_t^{1-\alpha}$$


• The evolution of the size of the working population

$$L_{t+1}=n_tL_t$$

where

$$n_t = \frac{\gamma}{\rho} y_t$$

$$L_{t+1} = \frac{\gamma}{\rho} y_t L_t = \frac{\gamma}{\rho} Y_t = \frac{\gamma}{\rho} (AX)^{\alpha} L_t^{1-\alpha} \equiv \phi(L_t; A)$$

$$L_{t+1} = \frac{\gamma}{\rho} (AX)^{\alpha} L_t^{1-\alpha} \equiv \phi(L_t; A)$$

• The evolution of the size of the working population

$$L_{t+1} = \frac{\gamma}{\rho} (AX)^{\alpha} L_t^{1-\alpha} \equiv \phi(L_t; A)$$

• Steady-State: $L_{t+1} = L_t = \bar{L}$

• The evolution of the size of the working population

$$L_{t+1} = \frac{\gamma}{\rho} (AX)^{\alpha} L_t^{1-\alpha} \equiv \phi(L_t; A)$$

• Steady-State: $L_{t+1} = L_t = \bar{L}$

$$\bar{L} =$$

• The evolution of the size of the working population

$$L_{t+1} = \frac{\gamma}{\rho} (AX)^{\alpha} L_t^{1-\alpha} \equiv \phi(L_t; A)$$

ullet Steady-State: $L_{t+1}=L_t=ar{L}$

$$ar{L} = rac{\gamma}{
ho} (AX)^{lpha}$$

• The evolution of the size of the working population

$$L_{t+1} = \frac{\gamma}{\rho} (AX)^{\alpha} L_t^{1-\alpha} \equiv \phi(L_t; A)$$

ullet Steady-State: $L_{t+1}=L_t=ar{L}$

$$\bar{L} = \frac{\gamma}{\rho} (AX)^{\alpha} \bar{L}^{1-\alpha}$$

The evolution of the size of the working population

$$L_{t+1} = \frac{\gamma}{\rho} (AX)^{\alpha} L_t^{1-\alpha} \equiv \phi(L_t; A)$$

• Steady-State: $L_{t+1} = L_t = \bar{L}$

$$\bar{L} = \frac{\gamma}{\rho} (AX)^{\alpha} \bar{L}^{1-\alpha}$$

• The steady-state level of the size of the working population

$$\bar{L} =$$

The evolution of the size of the working population

$$L_{t+1} = \frac{\gamma}{\rho} (AX)^{\alpha} L_t^{1-\alpha} \equiv \phi(L_t; A)$$

• Steady-State: $L_{t+1} = L_t = \bar{L}$

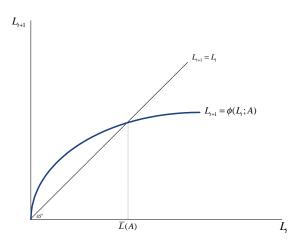
$$\bar{L} = \frac{\gamma}{\rho} (AX)^{\alpha} \bar{L}^{1-\alpha}$$

• The steady-state level of the size of the working population

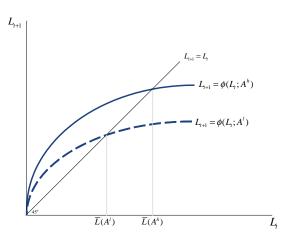
$$ar{L} = (rac{\gamma}{
ho})^{1/lpha}(AX)$$

The evolution of the size of the working population

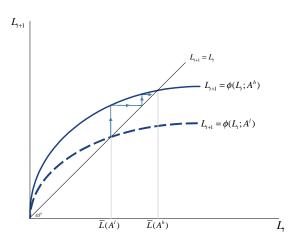
$$L_{t+1} = \frac{\gamma}{\rho} (AX)^{\alpha} L_t^{1-\alpha} \equiv \phi(L_t; A)$$


• Steady-State: $L_{t+1} = L_t = \bar{L}$

$$\bar{L} = \frac{\gamma}{\rho} (AX)^{\alpha} \bar{L}^{1-\alpha}$$


• The steady-state level of the size of the working population

$$\bar{L} = (\frac{\gamma}{\rho})^{1/\alpha}(AX) \equiv \bar{L}(A)$$


Population Dynamics

Adjustment of Population to Advancements in Technology

Adjustment of Population to Advancements in Technology

$$y_{t+1} =$$

$$y_{t+1} = \left[\frac{AX}{L_{t+1}}\right]^{\alpha}$$

$$y_{t+1} = \left[\frac{AX}{L_{t+1}}\right]^{\alpha} = \left[\frac{AX}{n_t L_t}\right]^{\alpha}$$

$$y_{t+1} = \left[\frac{AX}{L_{t+1}}\right]^{\alpha} = \left[\frac{AX}{n_t L_t}\right]^{\alpha} = \frac{y_t}{n_t^{\alpha}}$$

• The time path of income per worker

$$y_{t+1} = \left[\frac{AX}{L_{t+1}}\right]^{\alpha} = \left[\frac{AX}{n_t L_t}\right]^{\alpha} = \frac{y_t}{n_t^{\alpha}}$$

where

$$n_t = \frac{\gamma}{\rho} y_t$$

• The time path of income per worker

$$y_{t+1} = \left[\frac{AX}{L_{t+1}}\right]^{\alpha} = \left[\frac{AX}{n_t L_t}\right]^{\alpha} = \frac{y_t}{n_t^{\alpha}}$$

where

$$n_t = \frac{\gamma}{\rho} y_t$$

 \Longrightarrow

$$y_{t+1} =$$

• The time path of income per worker

$$y_{t+1} = \left[\frac{AX}{L_{t+1}}\right]^{\alpha} = \left[\frac{AX}{n_t L_t}\right]^{\alpha} = \frac{y_t}{n_t^{\alpha}}$$

where

$$n_t = \frac{\gamma}{\rho} y_t$$

 \Longrightarrow

$$y_{t+1} = \frac{y_t}{n_t^{\alpha}} =$$

• The time path of income per worker

$$y_{t+1} = \left[\frac{AX}{L_{t+1}}\right]^{\alpha} = \left[\frac{AX}{n_t L_t}\right]^{\alpha} = \frac{y_t}{n_t^{\alpha}}$$

where

$$n_t = \frac{\gamma}{\rho} y_t$$

 \Longrightarrow

$$y_{t+1} = rac{y_t}{n_t^{lpha}} = rac{y_t}{\left[rac{\gamma}{
ho}
ight]^{lpha}y_t^{lpha}}$$

• The time path of income per worker

$$y_{t+1} = \left[\frac{AX}{L_{t+1}}\right]^{\alpha} = \left[\frac{AX}{n_t L_t}\right]^{\alpha} = \frac{y_t}{n_t^{\alpha}}$$

where

$$n_t = \frac{\gamma}{\rho} y_t$$

 \Rightarrow

$$y_{t+1} = rac{y_t}{n_t^{lpha}} = rac{y_t}{\left\lceil rac{\gamma}{
ho}
ight
ceil^{lpha} y_t^{lpha}}$$

• The time path of income per worker

$$y_{t+1} = \left[\frac{AX}{L_{t+1}}\right]^{\alpha} = \left[\frac{AX}{n_t L_t}\right]^{\alpha} = \frac{y_t}{n_t^{\alpha}}$$

where

$$n_t = \frac{\gamma}{\rho} y_t$$

 \Longrightarrow

$$y_{t+1} = rac{y_t}{n_t^{lpha}} = rac{y_t}{\left[rac{\gamma}{
ho}
ight]^{lpha}y_t^{lpha}}$$

$$y_{t+1} =$$

• The time path of income per worker

$$y_{t+1} = \left[\frac{AX}{L_{t+1}}\right]^{\alpha} = \left[\frac{AX}{n_t L_t}\right]^{\alpha} = \frac{y_t}{n_t^{\alpha}}$$

where

$$n_t = \frac{\gamma}{\rho} y_t$$

 \Rightarrow

$$y_{t+1} = rac{y_t}{n_t^{lpha}} = rac{y_t}{\left\lceil rac{\gamma}{
ho}
ight
ceil^{lpha} y_t^{lpha}}$$

$$y_{t+1} = \left\lceil rac{
ho}{\gamma}
ight
ceil^lpha$$

• The time path of income per worker

$$y_{t+1} = \left[\frac{AX}{L_{t+1}}\right]^{\alpha} = \left[\frac{AX}{n_t L_t}\right]^{\alpha} = \frac{y_t}{n_t^{\alpha}}$$

where

$$n_t = \frac{\gamma}{\rho} y_t$$

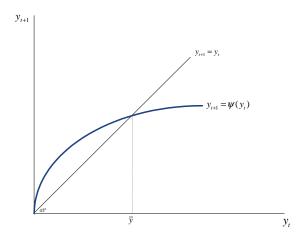
 \Rightarrow

$$y_{t+1} = rac{y_t}{n_t^{lpha}} = rac{y_t}{\left[rac{\gamma}{
ho}
ight]^{lpha}y_t^{lpha}}$$

$$y_{t+1} = \left\lceil rac{
ho}{\gamma}
ight
ceil^{lpha} y_t^{1-lpha}$$

• The time path of income per worker

$$y_{t+1} = \left[\frac{AX}{L_{t+1}}\right]^{\alpha} = \left[\frac{AX}{n_t L_t}\right]^{\alpha} = \frac{y_t}{n_t^{\alpha}}$$


where

$$n_t = \frac{\gamma}{\rho} y_t$$

 \Rightarrow

$$y_{t+1} = rac{y_t}{n_t^{lpha}} = rac{y_t}{\left[rac{\gamma}{
ho}
ight]^{lpha}y_t^{lpha}}$$

$$y_{t+1} = \left[rac{
ho}{\gamma}
ight]^lpha y_t^{1-lpha} \equiv \psi(y_t)$$

$$y_{t+1} = \left[rac{
ho}{\gamma}
ight]^{lpha} y_t^{1-lpha}$$

• The time path of income per worker

$$y_{t+1} = \left[rac{
ho}{\gamma}
ight]^{lpha} y_t^{1-lpha}$$

• Steady-State $y_{t+1} = y_t = \bar{y}$

$$\bar{y} =$$

The time path of income per worker

$$y_{t+1} = \left[\frac{\rho}{\gamma}\right]^{\alpha} y_t^{1-\alpha}$$

• Steady-State $y_{t+1} = y_t = \bar{y}$

$$ar{y} = \left[rac{
ho}{\gamma}
ight]^{lpha} ar{y}^{1-lpha}$$

The time path of income per worker

$$y_{t+1} = \left[\frac{\rho}{\gamma}\right]^{\alpha} y_t^{1-\alpha}$$

• Steady-State $y_{t+1} = y_t = \bar{y}$

$$ar{y} = \left[rac{
ho}{\gamma}
ight]^{lpha} ar{y}^{1-lpha}$$

The steady-state level of income per worker

$$\bar{y} =$$

The time path of income per worker

$$y_{t+1} = \left[\frac{\rho}{\gamma}\right]^{\alpha} y_t^{1-\alpha}$$

• Steady-State $y_{t+1} = y_t = \bar{y}$

$$\bar{y} = \left[\frac{\rho}{\gamma}\right]^{\alpha} \bar{y}^{1-\alpha}$$

• The steady-state level of income per worker

$$\bar{y} = \left[\frac{\rho}{\gamma}\right]$$

The time path of income per worker

$$y_{t+1} = \left[\frac{\rho}{\gamma}\right]^{\alpha} y_t^{1-\alpha}$$

• Steady-State $y_{t+1} = y_t = \bar{y}$

$$\bar{y} = \left[\frac{\rho}{\gamma}\right]^{\alpha} \bar{y}^{1-\alpha}$$

The steady-state level of income per worker

$$\bar{y} = \left[\frac{\rho}{\gamma}\right]$$

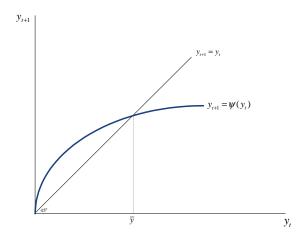
The steady-state level of fertility

$$\bar{n} = \frac{\gamma}{\rho}\bar{y} =$$

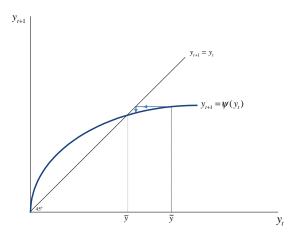
• The time path of income per worker

$$y_{t+1} = \left[\frac{\rho}{\gamma}\right]^{\alpha} y_t^{1-\alpha}$$

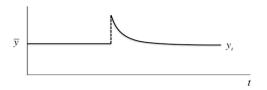
• Steady-State $y_{t+1} = y_t = \bar{y}$


$$\bar{y} = \left[\frac{\rho}{\gamma}\right]^{\alpha} \bar{y}^{1-\alpha}$$

The steady-state level of income per worker


$$\bar{y} = \left[\frac{\rho}{\gamma}\right]$$

• The steady-state level of fertility


$$ar{n} = rac{\gamma}{
ho}ar{y} = \left[rac{\gamma}{
ho}
ight]\left[rac{
ho}{\gamma}
ight] = 1$$

The Effect of Technological Advancement on income per Worker

Technological Progress and the Time Path of Population & Income

Impact of Technological Progress or Land Productivity

Increases the working population in the short-run and long-run

$$\frac{\partial L_t}{\partial A} > 0$$
; $\frac{\partial L_t}{\partial X} > 0$; $\frac{\partial \bar{L}}{\partial A} > 0$; $\frac{\partial \bar{L}}{\partial X} > 0$;

Increases income per worker in the short-run but not in the long-run

$$\frac{\partial y_t}{\partial A} > 0$$
; $\frac{\partial y_t}{\partial X} > 0$; $\frac{\partial \bar{y}}{\partial A} = 0$; $\frac{\partial \bar{y}}{\partial X} = 0$

• Technological progress:

- Technological progress:
 - Higher population density

- Technological progress:
 - Higher population density
 - No effect on income per-capita in the long-run

- Technological progress:
 - Higher population density
 - No effect on income per-capita in the long-run
- Higher land quality:

- Technological progress:
 - Higher population density
 - No effect on income per-capita in the long-run
- Higher land quality:
 - Higher population density

- Technological progress:
 - Higher population density
 - No effect on income per-capita in the long-run
- Higher land quality:
 - Higher population density
 - No effect on income per-capita in the long-run

Objective

• Confirm (or refute) the Malthusian hypothesis:

- Confirm (or refute) the Malthusian hypothesis:
 - The causal effect of technology on Population

- Confirm (or refute) the Malthusian hypothesis:
 - The causal effect of technology on Population
 - The absence of an effect of technology on income per capita

- Confirm (or refute) the Malthusian hypothesis:
 - The causal effect of technology on Population
 - The absence of an effect of technology on income per capita
- Confirmation cannot rely on correlation between technology & population:

- Confirm (or refute) the Malthusian hypothesis:
 - The causal effect of technology on Population
 - The absence of an effect of technology on income per capita
- Confirmation cannot rely on *correlation* between technology & population:
 - Correlation
 ⇒ Malthusian impact of technology on population

- Confirm (or refute) the Malthusian hypothesis:
 - The causal effect of technology on Population
 - The absence of an effect of technology on income per capita
- Confirmation cannot rely on *correlation* between technology & population:
 - - May reflect the impact of population on technology

Correlation ⇒ Causation

- Correlation ⇒ Causation
 - Reverse Causality

- Correlation ⇒ Causation
 - Reverse Causality
 - Omitted Variables

- Correlation ⇒ Causation
 - Reverse Causality
 - Omitted Variables
- Reverse Causality

- Correlation ⇒ Causation
 - Reverse Causality
 - Omitted Variables
- Reverse Causality
 - Correlation between: [overweight people] & [people on diet]

- Correlation ⇒ Causation
 - Reverse Causality
 - Omitted Variables
- Reverse Causality
 - Correlation between: [overweight people] & [people on diet]
 - Diet ⇒ Overweight ?

- Correlation ⇒ Causation
 - Reverse Causality
 - Omitted Variables
- Reverse Causality
 - Correlation between: [overweight people] & [people on diet]
 - Diet ⇒ Overweight ?
 - Overweight ⇒ Diet

- Correlation ⇒ Causation
 - Reverse Causality
 - Omitted Variables
- Reverse Causality
 - Correlation between: [overweight people] & [people on diet]
 - Diet ⇒ Overweight ?
 - Overweight ⇒ Diet
- Omitted Variables (3rd factor governs the correlation):

- Correlation ⇒ Causation
 - Reverse Causality
 - Omitted Variables
- Reverse Causality
 - Correlation between: [overweight people] & [people on diet]
 - Diet ⇒ Overweight ?
 - Overweight \Longrightarrow Diet
- Omitted Variables (3rd factor governs the correlation):
 - Correlation between: [ice cream consumption] & [people drown]

- Correlation ⇒ Causation
 - Reverse Causality
 - Omitted Variables
- Reverse Causality
 - Correlation between: [overweight people] & [people on diet]
 - Diet ⇒ Overweight ?
 - Overweight \Longrightarrow Diet
- Omitted Variables (3rd factor governs the correlation):
 - Correlation between: [ice cream consumption] & [people drown]
 - [ice cream consumption] ⇒ [people drown] ?

- Correlation ⇒ Causation
 - Reverse Causality
 - Omitted Variables
- Reverse Causality
 - Correlation between: [overweight people] & [people on diet]
 - Diet ⇒ Overweight ?
 - Overweight \Longrightarrow Diet
- Omitted Variables (3rd factor governs the correlation):
 - Correlation between: [ice cream consumption] & [people drown]
 - [ice cream consumption] ⇒ [people drown]?
 - high temperature

- Correlation ⇒ Causation
 - Reverse Causality
 - Omitted Variables
- Reverse Causality
 - Correlation between: [overweight people] & [people on diet]
 - Diet ⇒ Overweight ?
 - Overweight \Longrightarrow Diet
- Omitted Variables (3rd factor governs the correlation):
 - Correlation between: [ice cream consumption] & [people drown]
 - [ice cream consumption] ⇒ [people drown]?
 - high temperature

- Correlation ⇒ Causation
 - Reverse Causality
 - Omitted Variables
- Reverse Causality
 - Correlation between: [overweight people] & [people on diet]
 - Diet ⇒ Overweight ?
 - Overweight \Longrightarrow Diet
- Omitted Variables (3rd factor governs the correlation):
 - Correlation between: [ice cream consumption] & [people drown]
 - [ice cream consumption] ⇒ [people drown]?
 - high temperature ⇒ [ice cream consumption ↑]

- Correlation ⇒ Causation
 - Reverse Causality
 - Omitted Variables
- Reverse Causality
 - Correlation between: [overweight people] & [people on diet]
 - Diet ⇒ Overweight ?
 - Overweight \Longrightarrow Diet
- Omitted Variables (3rd factor governs the correlation):
 - Correlation between: [ice cream consumption] & [people drown]
 - [ice cream consumption] ⇒ [people drown]?
 - high temperature ⇒ [ice cream consumption ↑]
 - high temperature ⇒ [swimming in sea ↑]

- Correlation ⇒ Causation
 - Reverse Causality
 - Omitted Variables
- Reverse Causality
 - Correlation between: [overweight people] & [people on diet]
 - Diet ⇒ Overweight ?
 - Overweight \Longrightarrow Diet
- Omitted Variables (3rd factor governs the correlation):
 - Correlation between: [ice cream consumption] & [people drown]
 - [ice cream consumption] ⇒ [people drown]?
 - high temperature ⇒ [ice cream consumption ↑]
 - high temperature ⇒ [swimming in sea ↑]

- Correlation ⇒ Causation
 - Reverse Causality
 - Omitted Variables
- Reverse Causality
 - Correlation between: [overweight people] & [people on diet]
 - Diet ⇒ Overweight ?
 - Overweight ⇒ Diet
- Omitted Variables (3rd factor governs the correlation):
 - Correlation between: [ice cream consumption] & [people drown]
 - [ice cream consumption] ⇒ [people drown]?
 - high temperature ⇒ [ice cream consumption ↑]
 - high temperature \Rightarrow [swimming in sea \uparrow] \Rightarrow [people drown \uparrow]

Available Data

- Available Data
 - Dependent Variables:

- Available Data
 - Dependent Variables:
 - Income per capita in the years 1, 1000, 1500

- Available Data
 - Dependent Variables:
 - Income per capita in the years 1, 1000, 1500
 - Population density in the years 1, 1000, 1500

- Available Data
 - Dependent Variables:
 - Income per capita in the years 1, 1000, 1500
 - Population density in the years 1, 1000, 1500
 - Main Independent Variables:

- Available Data
 - Dependent Variables:
 - Income per capita in the years 1, 1000, 1500
 - Population density in the years 1, 1000, 1500
 - Main Independent Variables:
 - Technological level in the years 1000 BCE, 1, 1000, 1500

- Available Data
 - Dependent Variables:
 - Income per capita in the years 1, 1000, 1500
 - Population density in the years 1, 1000, 1500
 - Main Independent Variables:
 - Technological level in the years 1000 BCE, 1, 1000, 1500
 - Land Productivity

Identification Strategy

• Exploit exogenous sources of cross-country variation in technological level

Identification Strategy

- Exploit exogenous sources of cross-country variation in technological level
 - Historical origins of variation in technological level across countries

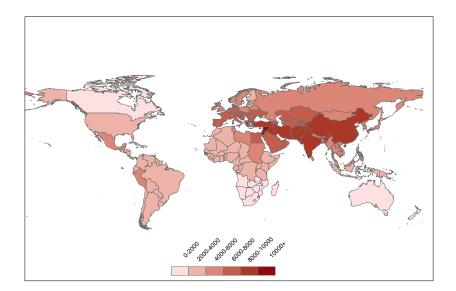
Identification Strategy

- Exploit exogenous sources of cross-country variation in technological level
 - Historical origins of variation in technological level across countries
 - Differential onset of the Neolithic Revolution across the globe

• The transition from hunter-gatherer tribes to agricultural communities

- The transition from hunter-gatherer tribes to agricultural communities
 - Emergence of non-food-producing class:

- The transition from hunter-gatherer tribes to agricultural communities
 - Emergence of non-food-producing class:
 - ⇒ Knowledge creation (science, technology & written languages)


- The transition from hunter-gatherer tribes to agricultural communities
 - Emergence of non-food-producing class:
 - ⇒ Knowledge creation (science, technology & written languages)
 - → Technological head start

- The transition from hunter-gatherer tribes to agricultural communities
 - Emergence of non-food-producing class:
 - Knowledge creation (science, technology & written languages)
 - ⇒ Technological head start
- Variations in the timing of the NR:

The Neolithic Revolution

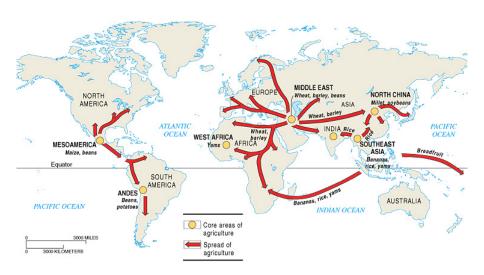
- The transition from hunter-gatherer tribes to agricultural communities
 - Emergence of non-food-producing class:
 - Knowledge creation (science, technology & written languages)
 - ⇒ Technological head start
- Variations in the timing of the NR:
 - \Longrightarrow Origins of variations in the level of technology across the globe

Variation in the Onset of the Neolithic Revolution

Geographical factors conducive for biodiversity (climate, latitude, landmass)

- Geographical factors conducive for biodiversity (climate, latitude, landmass)
 - Availability of domesticable species of plants and animals

- Geographical factors conducive for biodiversity (climate, latitude, landmass)
 - Availability of domesticable species of plants and animals
 - Something
 Something
 Onset of domestication


- Geographical factors conducive for biodiversity (climate, latitude, landmass)
 - Availability of domesticable species of plants and animals
 - Sometimes of domestication
- Orientation of continents:

- Geographical factors conducive for biodiversity (climate, latitude, landmass)
 - Availability of domesticable species of plants and animals
 - Something
 Something
 Onset of domestication
- Orientation of continents:
 - Diffusion of agricultural practices along similar latitudes

- Geographical factors conducive for biodiversity (climate, latitude, landmass)
 - Availability of domesticable species of plants and animals
 - Onset of domestication
- Orientation of continents:
 - Diffusion of agricultural practices along similar latitudes
- Climatic changes

- Geographical factors conducive for biodiversity (climate, latitude, landmass)
 - Availability of domesticable species of plants and animals
 - Sometimes of domestication
- Orientation of continents:
 - \Longrightarrow Diffusion of agricultural practices along similar latitudes
- Climatic changes
 - Hunter-gatherers abandoned their traditional nomadism in order to store food and smooth their consumption (Matranga, 2019)

Spatial Diffusion of the Neolithic Revolution

• The domination of Euro-Asia in the pre-colonial era reflects:

- The domination of Euro-Asia in the pre-colonial era reflects:
 - Larger number of domesticable species of plants and animals

- The domination of Euro-Asia in the pre-colonial era reflects:
 - Larger number of domesticable species of plants and animals
 - East-West orientation

- The domination of Euro-Asia in the pre-colonial era reflects:
 - Larger number of domesticable species of plants and animals
 - East-West orientation
 - Technological head start and its effect on development

- The domination of Euro-Asia in the pre-colonial era reflects:
 - Larger number of domesticable species of plants and animals
 - East-West orientation
 - \Longrightarrow Technological head start and its effect on development
- Earlier onset of the Neolithic Revolution:

- The domination of Euro-Asia in the pre-colonial era reflects:
 - Larger number of domesticable species of plants and animals
 - East-West orientation
 - Technological head start and its effect on development
- Earlier onset of the Neolithic Revolution:
 - Technological superiority

Avoiding reverse causality:

- Avoiding reverse causality:
 - Exploit the projected level of technology in each country (rather than the actual one) based on:

- Avoiding reverse causality:
 - Exploit the projected level of technology in each country (rather than the actual one) based on:
 - The time elapsed since the Neolithic Revolution (NR)

- Avoiding reverse causality:
 - Exploit the projected level of technology in each country (rather than the actual one) based on:
 - The time elapsed since the Neolithic Revolution (NR)
- Mitigating concerns about omitted variables (e.g., ability) that could have goverend relationship between [population[& [NR]

- Avoiding reverse causality:
 - Exploit the projected level of technology in each country (rather than the actual one) based on:
 - The time elapsed since the Neolithic Revolution (NR)
- Mitigating concerns about omitted variables (e.g., ability) that could have goverend relationship between [population[& [NR]
 - Instrumental Variable (IV) for the timing of the NR

- Avoiding reverse causality:
 - Exploit the projected level of technology in each country (rather than the actual one) based on:
 - The time elapsed since the Neolithic Revolution (NR)
- Mitigating concerns about omitted variables (e.g., ability) that could have goverend relationship between [population[& [NR]
 - Instrumental Variable (IV) for the timing of the NR
 - Number of prehistoric domesticable species of plants and animals

- Avoiding reverse causality:
 - Exploit the projected level of technology in each country (rather than the actual one) based on:
 - The time elapsed since the Neolithic Revolution (NR)
- Mitigating concerns about omitted variables (e.g., ability) that could have goverend relationship between [population[& [NR]
 - Instrumental Variable (IV) for the timing of the NR
 - Number of prehistoric domesticable species of plants and animals
 - Identifying Assumption: prehistoric domesticable species of plants and animals affected population density only via the NR timing

The Neolithic Revolution & Technological Level: 1000 BCE-1500 CE

	(1)	(2)	(3)	(4)	(5)	(6)	
	OLS	OLS	OLS	OLS	OLS	OLS	
	Log Technological Level						
	1000 BCE 1 CE 1500 CE						
Log years since Neolithic	0.72*** (0.06)	0.47*** (0.12)	0.56*** (0.06)	0.28** (0.12)	0.74*** (0.06)	0.34** (0.10)	
Geographical Controls	No	Yes	No	Yes	No	Yes	
Continental dummies	No	Yes	No	Yes	No	Yes	
Observations	112	112	134	134	134	134	
Adjusted R ²	0.51	0.60	0.31	0.63	0.55	0.82	
Notes: Robus	t standard erro	ors in parenthe	ses; *** p<0.	01, ** p<0.0	5, * p<0.1		

$$\ln P_{i,t} = \alpha_{0,t} + \alpha_{1,t} \ln T_{i,t} + \alpha_{2,t} \ln X_i + \alpha'_{3,t} \Gamma_i + \alpha'_{4,t} D_i + \delta_{i,t}$$

$$\ln y_{i,t} = \beta_{0,t} + \beta_{1,t} \ln T_{i,t} + \beta_{2,t} \ln X_i + \beta'_{3,t} \Gamma_i + \beta'_{4,t} D_i + \varepsilon_{i,t}$$

ullet $P_{i,t} \equiv$ population density of country i in year t

$$\ln P_{i,t} = \alpha_{0,t} + \alpha_{1,t} \ln T_{i,t} + \alpha_{2,t} \ln X_i + \alpha_{3,t}^{'} \Gamma_i + \alpha_{4,t}^{'} D_i + \delta_{i,t}$$

$$\ln y_{i,t} = \beta_{0,t} + \beta_{1,t} \ln T_{i,t} + \beta_{2,t} \ln X_i + \beta_{3,t}^{'} \Gamma_i + \beta_{4,t}^{'} D_i + \varepsilon_{i,t}$$

- ullet $P_{i,t} \equiv$ population density of country i in year t
- $y_{i,t} \equiv$ income per capita of country i in year t

$$\ln P_{i,t} = \alpha_{0,t} + \alpha_{1,t} \ln T_{i,t} + \alpha_{2,t} \ln X_i + \alpha_{3,t}' \Gamma_i + \alpha_{4,t}' D_i + \delta_{i,t}$$

$$\ln y_{i,t} = \beta_{0,t} + \beta_{1,t} \ln T_{i,t} + \beta_{2,t} \ln X_i + \beta_{3,t}' \Gamma_i + \beta_{4,t}' D_i + \varepsilon_{i,t}$$

- ullet $P_{i,t} \equiv$ population density of country i in year t
- $y_{i,t} \equiv$ income per capita of country i in year t
- $T_i \equiv$ years elapsed since the onset of agriculture in country i

$$\ln P_{i,t} = \alpha_{0,t} + \alpha_{1,t} \ln T_{i,t} + \alpha_{2,t} \ln X_i + \alpha_{3,t}^{'} \Gamma_i + \alpha_{4,t}^{'} D_i + \delta_{i,t}$$

$$\ln y_{i,t} = \beta_{0,t} + \beta_{1,t} \ln T_{i,t} + \beta_{2,t} \ln X_i + \beta_{3,t}^{'} \Gamma_i + \beta_{4,t}^{'} D_i + \varepsilon_{i,t}$$

- $P_{i,t} \equiv \text{population density of country } i \text{ in year } t$
- $y_{i,t} \equiv$ income per capita of country i in year t
- $T_i \equiv$ years elapsed since the onset of agriculture in country i
- $X_i \equiv$ measure of land productivity for country i

$$\ln P_{i,t} = \alpha_{0,t} + \alpha_{1,t} \ln T_{i,t} + \alpha_{2,t} \ln X_i + \alpha'_{3,t} \Gamma_i + \alpha'_{4,t} D_i + \delta_{i,t}$$

$$\ln y_{i,t} = \beta_{0,t} + \beta_{1,t} \ln T_{i,t} + \beta_{2,t} \ln X_i + \beta'_{3,t} \Gamma_i + \beta'_{4,t} D_i + \varepsilon_{i,t}$$

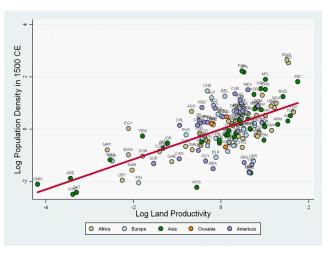
- $P_{i,t} \equiv$ population density of country i in year t
- $y_{i,t} \equiv$ income per capita of country i in year t
- $T_i \equiv$ years elapsed since the onset of agriculture in country i
- $X_i \equiv$ measure of land productivity for country i
- $\Gamma_i \equiv$ vector of geographical controls for country i

$$\ln P_{i,t} = \alpha_{0,t} + \alpha_{1,t} \ln T_{i,t} + \alpha_{2,t} \ln X_i + \alpha_{3,t}^{'} \Gamma_i + \alpha_{4,t}^{'} D_i + \delta_{i,t}$$

$$\ln y_{i,t} = \beta_{0,t} + \beta_{1,t} \ln T_{i,t} + \beta_{2,t} \ln X_i + \beta_{3,t}^{'} \Gamma_i + \beta_{4,t}^{'} D_i + \varepsilon_{i,t}$$

- $P_{i,t} \equiv$ population density of country i in year t
- $y_{i,t} \equiv$ income per capita of country i in year t
- $T_i \equiv$ years elapsed since the onset of agriculture in country i
- $X_i \equiv$ measure of land productivity for country i
- $\Gamma_i \equiv$ vector of geographical controls for country i
- $D_i \equiv$ vector of continental fixed effect in country i

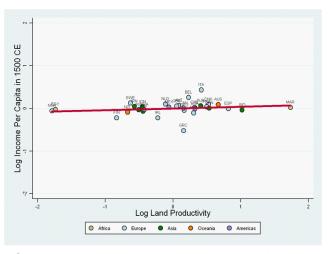
Determinants of Population Density in 1500 CE


	(1)	(2)	(3)	(4)	(5)	(6)		
	OLS	OLS	OLS	OLS	OLS	IV		
		Log population density in 1500 CE						
Log years since Neolithic	0.833*** (0.298)		1.025*** (0.223)	1.087*** (0.184)	1.389*** (0.224)	2.077*** (0.391)		
Log land productivity		0.587*** (0.071)	0.641*** (0.059)	0.576*** (0.052)	0.573*** (0.095)	0.571*** (0.082)		
Log absolute latitude		-0.425*** (0.124)	-0.353*** (0.104)	-0.314*** (0.103)	-0.278** (0.131)	-0.248** (0.117)		
Distance to nearest coast or river				-0.392*** (0.142)	0.220 (0.346)	0.250 (0.333)		
% land within 100 km of coast or river				0.899*** (0.282)	1.185*** (0.377)	1.350*** (0.380)		
Continental dummies	Yes	Yes	Yes	Yes	Yes	Yes		
Observations	147	147	147	147	96	96		
R^2	0.40	0.60	0.66	0.73	0.73	0.70		
First-stage F-statistic						14.65		
Overident. p-value						0.44		

Effects on Population Density vs Income per Capita

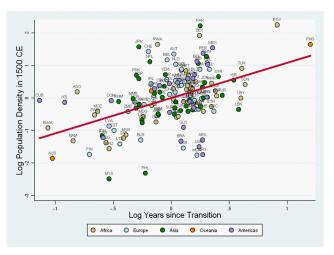
(1)	(2)	(3)	(4)	(5)	(6)
OLS	OLS	OLS	OLS	OLS	OLS
Log Ir	ncome Per Cap	ita in	Log F	opulation Dens	ity in
1500 CE	1000 CE	1 CE	1500 CE	1000 CE	1 CE
0.159 (0.136)	0.073 (0.045)	0.109 (0.072)	1.337** (0.594)	0.832** (0.363)	1.006** (0.483)
0.041 (0.025)	- 0.021 (0.025)	- 0.001 (0.027)	0.584*** (0.159)	0.364*** (0.110)	0.681** (0.255)
-0.041 (0.073)	0.060 (0.147)	-0.175 (0.175)	0.050 (0.463)	-2.140 ** (0.801)	-2.163 ** (0.979)
0.215 (0.198)	-0.111 (0.138)	0.043 (0.159)	-0.429 (1.237)	-0.237 (0.751)	0.118 (0.883)
0.124 (0.145)	-0.150 (0.121)	0.042 (0.127)	1.855 ** (0.820)	1.326 ** (0.615)	0.228 (0.919)
Yes	Yes	Yes	Yes	Yes	Yes
31	26	29	31	26	29
0.66	0.68	0.33	0.88	0.95	0.89
	OLS Log Ir 1500 CE 0.159 (0.136) 0.041 (0.025) -0.041 (0.073) 0.215 (0.198) 0.124 (0.145) Yes 31	OLS OLS Log Income Per Cap 1500 CE 1000 CE 0.159 0.073 (0.045) 0.041 -0.021 (0.025) (0.025) -0.041 0.060 (0.147) 0.215 -0.111 (0.198) (0.138) 0.124 -0.150 (0.145) (0.121) Yes Yes 31 26	OLS OLS Log Income Per Capita in 1500 CE 1000 CE 1 CE 0.159 0.073 0.109 (0.136) (0.045) (0.072) 0.041 -0.021 -0.001 (0.025) (0.025) (0.027) -0.041 0.060 -0.175 (0.073) (0.147) (0.175) 0.215 -0.111 0.043 (0.198) (0.138) (0.159) 0.124 -0.150 0.042 (0.145) (0.121) (0.127) Yes 31 26 29	OLS OLS OLS Log Income Per Capita in Log F 1500 CE 1000 CE 1 CE 1500 CE 0.159 0.073 0.109 1.337** (0.136) (0.045) (0.072) (0.594) 0.041 -0.021 -0.001 0.584*** (0.025) (0.027) (0.159) -0.041 0.060 -0.175 0.050 (0.073) (0.147) (0.175) (0.463) 0.215 -0.111 0.043 -0.429 (0.198) (0.138) (0.159) (1.237) 0.124 -0.150 0.042 1.855** (0.145) (0.121) (0.127) (0.820) Yes Yes Yes Yes 31 26 29 31	OLS OLS OLS OLS Log Income Per Capita in Log Population Dens 1500 CE 1000 CE 1 CE 1500 CE 1000 CE 0.159 0.073 0.109 1.337** 0.832** (0.136) (0.045) (0.072) (0.594) (0.363) 0.041 -0.021 -0.001 0.584*** 0.364*** (0.025) (0.027) (0.159) (0.110) -0.041 0.060 -0.175 0.050 -2.140** (0.073) (0.147) (0.175) (0.463) (0.801) 0.215 -0.111 0.043 -0.429 -0.237 (0.198) (0.138) (0.159) (1.237) (0.751) 0.124 -0.150 0.042 1.855** 1.326** (0.145) (0.121) (0.127) (0.820) (0.615) Yes Yes Yes Yes 31 26 29 31 26

Notes: Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1


Land Productivity and Population Density in 1500

Conditional on transition timing, geographical factors, and continental fixed effects.

Source: Ashraf-Galor (AER 2011)


Land Productivity and Income per Capita in 1500

 $Conditional \ on \ transition \ timing, \ geographical \ factors, \ and \ continental \ fixed \ effects.$

Source: Ashraf-Galor (AER 2011)

Technology and Population Density in 1500



 $Years\ elapsed\ since\ the\ Neolithic\ Transition\ reflects\ the\ technological\ level\ in\ 1500.$

Conditional on land productivity, geographical factors, and continental fixed effects.

Source: Ashraf-Galor (AER 2011)

Technology and Income per Capita in 1500

Years elapsed since the Neolithic Transition reflects the technological level in 1500.

Conditional on land productivity, geographical factors, and continental fixed effects.

Source: Ashraf-Galor (AER 2011)

55 / 59

• Robustness to the inclusion of direct measures of technology

- Robustness to the inclusion of direct measures of technology
 - Exploit variation in a direct measure of the technology level

- Robustness to the inclusion of direct measures of technology
 - Exploit variation in a direct measure of the technology level
 - Use prehistoric biogeographic endowments as IV for this measure

- Robustness to the inclusion of direct measures of technology
 - Exploit variation in a direct measure of the technology level
 - Use prehistoric biogeographic endowments as IV for this measure
- Rubstness to the distance from the technological frontier

Robustness to Direct Measures of Technological Level

	OLS	OLS	OLS	OLS	OLS	OLS
	(1)	(2)	(3)	(4)	(5)	(6)
	_	pulation ity in:	Log Inco			oulation ty in:
	1000 CE	1 CE	Capit 1000 CE	a in: 1 CE	1000 CE	ty in: 1 CE
Log Technology Index in Relevant Period	4.315*** (0.850)	4.216*** (0.745)	0.064 (0.230)	0.678 (0.432)	12.762*** (0.918)	7.461** (3.181)
Log land productivity	0.449*** (0.056)	0.379*** (0.082)	-0.016 (0.030)	0.004 (0.033)	0.429** (0.182)	0.725** (0.303)
Log absolute latitude	-0.283** (0.120)	-0.051 (0.127)	0.036 (0.161)	-0.198 (0.176)	-1.919*** (0.576)	-2.350*** (0.784)
Distance to nearest coast or river	-0.638*** (0.188)	-0.782*** (0.198)	-0.092 (0.144)	0.114 (0.164)	0.609 (0.469)	0.886 (0.904)
% land within 100 km of coast or river	0.385 (0.313)	0.237 (0.329)	-0.156 (0.139)	0.092 (0.136)	1.265**	0.788 (0.934)
Continental dummies Observations	Yes 140	Yes 129	Yes 26	Yes 29 0.30	Yes 26 0.97	Yes 29 0.88

The Causal Effect of Technological Level on Population Density

	OLS	OLS	IV	OLS	OLS	IV
	(1)	(2)	(3)	(4)	(5)	(6)
			Population	Density in:		
		1000CE			1CE	
Log Technology Index in	4.315***	4.198***	14.530***	4.216***	3.947***	10.798***
Relevant Period	(0.850)	(1.164)	(4.437)	(0.745)	(0.983)	(2.857)
Log land productivity	0.449***	0.498***	0.572***	0.379***	0.350**	0.464**
	(0.056)	(0.139)	(0.148)	(0.082)	(0.172)	(0.182)
Log absolute latitude	-0.283**	-0.185	-0.209	-0.051	0.083	-0.052
	(0.120)	(0.151)	(0.209)	(0.127)	(0.170)	(0.214)
Distance to nearest coast or river	-0.638***	-0.363	-1.155*	-0.782***	-0.625	-0.616
	(0.188)	(0.426)	(0.640)	(0.198)	(0.434)	(0.834)
% land within 100 km of coast or river	0.385	0.442	0.153	0.237	0.146	-0.172
	(0.313)	(0.422)	(0.606)	(0.329)	(0.424)	(0.642)
Continental dummies	Yes	Yes	Yes	Yes	Yes	Yes
Observations	140	92	92	129	83	83
R ²	0.61	0.55	0.13	0.62	0.58	0.32
First-stage F-statistic Overid. p-value			12.52 0.941			12.00 0.160

Oded Galor

Robustness to Technology Diffusion and other Geographic Characteristics

	(1)	(2)	(3)	(4)	(5)	(6)
	Log Population Density in 1500		Log Income Per Capita in 1500		Log Population Density in 1500	
Log Technology Index in	0.828*** (0.208)	0.877***	0.117	0.103	1.498**	1.478**
Relevant Period		(0.214)	(0.221)	(0.214)	(0.546)	(0.556)
Log land productivity	0.559***	0.545***	0.036	0.047	0.596***	0.691***
	(0.048)	(0.063)	(0.032)	(0.037)	(0.123)	(0.122)
Log Distance to Frontier	-0.186***	-0.191***	-0.005	-0.001	-0.130*	-0.108*
	(0.035)	(0.036)	(0.011)	(0.013)	(0.066)	(0.055)
Small Island Dummy	0.067	0.086	-0.118	-0.046	1.962**	2.720***
	(0.582)	(0.626)	(0.216)	(0.198)	(0.709)	(0.699)
Landlocked Dummy	0.131	0.119	0.056	0.024	1.490***	1.269***
	(0.209)	(0.203)	(0.084)	(0.101)	(0.293)	(0.282)
% Land in Temperate Climate Zones		-0.196 (0.513)		-0.192 (0.180)		-1.624* (0.917)
Continental dummies	Yes	Yes	Yes	Yes	Yes	Yes
Observations	147	147	31	31	31	31
R ²	0.76	0.76	0.67	0.67	0.94	0.96